1

1

1

2

2

SUMMATIVE ASSESSMENT - I, 2016-17 **MATHEMATICS**

Class - IX

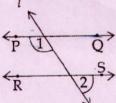
Time Allowed: 3 hours

Maximum Marks: 50

General Instructions:

- All questions are compulsory. 1.
- The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.

SECTION-A


Question numbers 1 to 4 carry one mark each.

- 1 Find the value of $\frac{3^0 + 5^0}{4^0}$
- Factorise: $x^2 4x + 4$. 2
 - Two parallel lines AB and CD are intersected by a transversal PQ at R and S respectively. Draw the 3 figure and write pairs of alternate interior angles.
 - If (a, b) = (0, -2), find value of a and b 4

SECTION-B

Question numbers 5 to 10 carry two marks each.

- Express -0.00875 in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$. 5
- Find the remainder when the polynomial $p(y) = y^4 3y^2 + 2y + 6$ is divided by y + 1. 6
- State any two of Euclid's five postulates. 7
- In the figure, two parallel lines PQ and RS are intersected by a transversal l such that $\angle 1$: $\angle 2 = 7$: 2. 8 Find \(1 \) and \(\alpha 2 \).

- Point P(2, 3) lies in which quadrant? What will be the co-ordinates of a point Q opposite to it in fourth quadrant having equal distance from x-axis?
- If area of a right angled triangle is 240 m² and side other than hypotenuse is 30 m find the 10 perimeter of the triangle.

SECTION-C

Question numbers 11 to 20 carry three marks each.

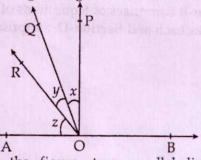
Represent $\sqrt{3}$ on the number line. 11

2

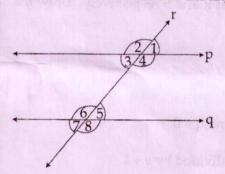
If
$$\frac{2 - \sqrt{5}}{2 + 3\sqrt{5}} = \sqrt{5} \ a + b$$
, find a and b.

3

Prove that $\frac{0.87 \times 0.87 \times 0.87 \times 0.87 + 0.13 \times 0.13 \times 0.13}{0.87 \times 0.87 \times 0.87 \times 0.13 \times 0.13 \times 0.13} = 1, \text{ using suitable identity}.$

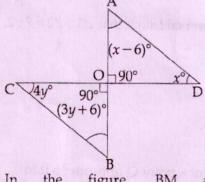

3

If both (x + 2) and (2x + 1) are factors of $ax^2 + 2x + b$, prove that a - b = 0.

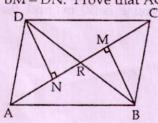

3

In the given figure, PO \perp AB. If x:y:z=1:3:5, then find the measures of x, y and z

3



In the figure, two parallel lines p and q are intersected by a transversal r such that $3 \angle 2 : \angle 3 = 8 : 7$. Find all the angles.



2

Find x and y in the given figure.

In the figure, BM and DN are both perpendiculars to AC and BM = DN. Prove that AC bisects BD.

of 4

- 19 Locate the points A(2, 5), B(-3, 5), C(5, 0), D (0, 4), E(6,-3), F(-4,-8), 3 G(3,-1) and H(-3, 0) in the cartesian plane.
- Sides of a triangular field are 25 m, 45 m and 50 m. Find its area and the altitude corresponding to 3 the longest side. (Use $\sqrt{14} = 3.73$)

SECTION-D

4

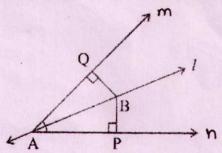
Question numbers 21 to 31 carry four marks each.

If $x = 2 + \sqrt{3}$, find the value of $x^2 + \frac{1}{x^2}$.

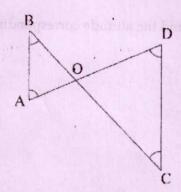
22 For any positive real number x, prove that

$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1$$

Find the value of p for which the polynomial $x^3 + 4x^2 - px$ -10 is exactly divisible by x - 2. Hence factorise the polynomial.

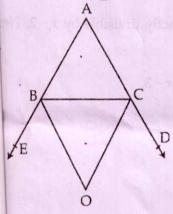

Show by long division that 2x + 3 is a factor of $p(x) = 4x^4 + 8x^3 + 5x^2 + x - 3$.

- 25 Factorise: $125a^3 27b^3 + 75a^2b 45ab^2$
- 26 If a, b, c are all non zero real numbers and a + b + c = 0, prove that

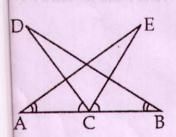

$$\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3.$$

Two straight roads m and n intersect at point A. A student B starts from A and walks in such a way that 4 it is equidistant from the roads m and n. Show that AB bisects $\angle QAP$.

Write briefly about the advantages of morning walk.



28 It is known that a-c=25 and that a=b. Show that b-c=25. Write the Euclid's axiom that best 4 illustrates this statement. Also give two more axioms other than the axiom used in the above situation.


In the figure, the sides AB and AC of \triangle ABC are produced to points E and D respectively. If 4 bisectors BO and CO of \angle CBE and \angle BCD respectively meet at a point O, then prove that

$$\angle BOC = 90^{\circ} - \frac{1}{2} \angle BAC.$$

In the given figure, if AC = BC, $\angle DCA = \angle ECB$ and $\angle DBC = \angle EAC$, prove that DC = EC.

4

-0000000-